Trabajo catalogado en

La Webtecnica.

Síntesis: Generalidades sobre la célula y la relación con la clonación.

Realizado por: Juan Bogarín, Mariano Bogarín y Amadeo Delle Chiaie, E.E.T. Nro. 4 de Vicente López.

Tamaño: 126 KB.

Fecha de Publicación/Corrección: Diciembre de 2001.

 

La célula y la clonación.

 

¿Qué es la célula?

Esta es una pregunta difícil de responder, si queremos ser rigurosos y exactos con la respuesta. Todos tenemos una idea vaga y difusa de lo que es, los libros y definiciones de hace 20 años comenzaban con "La célula es la unidad mínima de un organismo, capaz de actuar de manera autónoma..."

En parte esto es cierto, pero en la actualidad esta definición no es del todo válida, ya que con el transcurso del tiempo se ha avanzado mucho en la investigación de la célula, sus componentes, funciones, características y diversas formas de esta.

Dentro de esta monografía, si se estudia detenidamente, el lector llegará a saber con bastante precisión qué es, cuáles son sus funciones y el porqué es importante saber sobre este tema en particular.

 

Composición química de la célula

El estudio de la bioquímica, está dominado por compuestos de carbono y se caracteriza por reacciones acaecidas en solución acuosa y en un intervalo de temperaturas pequeñas. Está dominada y coordinada por polímeros de gran tamaño, moléculas formadas por encadenamiento de subunidades químicas; las propiedades únicas de estos compuestos permiten a células y organismos crecer y reproducirse. Los tipos principales de macromoléculas son las proteínas, formadas por cadenas lineales de aminoácidos; los ácidos nucleicos, ADN y ARN, formados por bases nucleotídicas, y los polisacáridos, formados por subunidades de azúcares.

Superficie celular

El contenido de todas las células vivas está rodeado por una membrana delgada llamada membrana plasmática, o celular, que marca el límite entre el contenido celular y el medio externo. La membrana plasmática es una película continua formada por moléculas de lípidos y proteínas y actúa como barrera selectiva reguladora de la composición química de la célula. Otro mecanismo, que consiste en la formación de pequeñas vesículas de membrana que se incorporan a la membrana plasmática o se separan de ella, permite a las células animales transferir macromoléculas y partículas aún mayores a través de la membrana. Casi todas las células bacterianas y vegetales están además encapsuladas en una pared celular gruesa y sólida compuesta de polisacáridos. La pared celular, que es externa a la membrana plasmática, mantiene la forma de la célula y la protege de daños mecánicos, pero también limita el movimiento celular y la entrada y salida de materiales.

Características generales de las células

Hay células de formas y tamaños muy variados. Algunas de las células bacterianas más pequeñas tienen forma cilíndrica de menos de una micra o µm (1 µm es igual a una millonésima de metro) de longitud. En el extremo opuesto se encuentran las células nerviosas, corpúsculos de forma compleja con numerosas prolongaciones delgadas que pueden alcanzar varios metros de longitud. Las células de los tejidos animales suelen ser compactas, entre 10 y 20 µm de diámetro y con una membrana superficial deformable y casi siempre muy plegada. Pese a las muchas diferencias de aspecto y función, todas las células están envueltas en una membrana que encierra una sustancia rica en agua llamada citoplasma. En el interior de las células tienen lugar numerosas reacciones químicas que les permiten crecer, producir energía y eliminar residuos. El conjunto de estas reacciones se llama metabolismo. Todas las células contienen información hereditaria codificada en moléculas de ácido desoxirribonucleico (ADN); esta información dirige la actividad de la célula y asegura la reproducción y el paso de los caracteres a la descendencia. Estas y otras numerosas similitudes demuestran que hay una relación evolutiva entre las células actuales y las primeras que aparecieron sobre la Tierra.

El núcleo

El órgano más conspicuo en casi todas las células animales y vegetales es el núcleo; está rodeado de forma característica por una membrana, es esférico y mide unas 5 µm de diámetro. Dentro del núcleo, las moléculas de ADN y proteínas están organizadas en cromosomas que suelen aparecer dispuestos en pares idénticos. Los cromosomas están muy retorcidos y enmarañados y es difícil identificarlos por separado. Pero justo antes de que la célula se divida, se condensan y adquieren grosor suficiente para ser detectables como estructuras independientes. El ADN del interior de cada cromosoma es una molécula única muy larga y arrollada que contiene secuencias lineales de genes. El núcleo está rodeado por una membrana doble, y la interacción con el resto de la célula tiene lugar a través de unos orificios llamados poros nucleares. El nucleolo es una región especial en la que se sintetizan partículas que contienen ARN y proteína que migran al citoplasma a través de los poros nucleares y a continuación se modifican para transformarse en ribosomas. El núcleo controla la síntesis de proteínas en el citoplasma enviando mensajeros moleculares. El ARN mensajero (ARNm) se sintetiza de acuerdo con las instrucciones contenidas en el ADN y abandona el núcleo a través de los poros. Una vez en el citoplasma, el ARNm se acopla a los ribosomas y codifica la estructura primaria de una proteína específica.

Citoplasma y citosol

El citoplasma comprende todo el volumen de la célula, salvo el núcleo. Engloba numerosas estructuras especializadas y orgánulos. La solución acuosa concentrada en la que están suspendidos los orgánulos se llama citosol. Es un gel de base acuosa que contiene gran cantidad de moléculas grandes y pequeñas, y en la mayor parte de las células es más voluminoso. En el citosol se producen las primeras etapas de descomposición de moléculas nutritivas y la síntesis de muchas de las grandes moléculas que constituyen la célula. Aunque muchas moléculas del citosol se encuentran en estado de solución verdadera y se desplazan con rapidez de un lugar a otro por difusión libre, otras están ordenadas de forma rigurosa. Estas estructuras ordenadas confieren al citosol una organización interna que actúa como marco para la fabricación y descomposición de grandes moléculas y canaliza muchas de las reacciones químicas celulares a lo largo de vías restringidas.

Citoesqueleto

El Citoesqueleto es una red de filamentos proteicos del citosol que ocupa el interior de todas las células animales y vegetales. Adquiere una relevancia especial en las animales, que carecen de pared celular rígida, pues el Citoesqueleto mantiene la estructura y la forma de la célula. Actúa como bastidor para la organización de la célula y la fijación de orgánulos y enzimas. También es responsable de muchos de los movimientos celulares. En muchas células, el Citoesqueleto no es una estructura permanente, sino que se desmantela y se reconstruye sin cesar. Se forma a partir de tres tipos principales de filamentos proteicos: microtúbulos, filamentos de actina y filamentos intermedios, unidos entre sí y a otras estructuras celulares por diversas proteínas. Los movimientos de las células eucarióticas están casi siempre mediatizados por los filamentos de actina o los microtúbulos. Muchas células tienen en la superficie pelos flexibles llamados cilios o flagelos, que contienen un núcleo formado por un haz de microtúbulos capaz de desarrollar movimientos de flexión regulares que requieren energía. Los espermatozoides nadan con ayuda de flagelos, y las células que revisten el intestino y otros conductos del cuerpo de los vertebrados tienen en la superficie numerosos cilios que impulsan líquidos y partículas en una dirección determinada. Se encuentran grandes haces de filamentos de actina en las células musculares donde, junto con una proteína llamada miosina, generan contracciones poderosas. Los movimientos asociados con la división celular dependen en animales y plantas de los filamentos de actina y los microtúbulos, que distribuyen los cromosomas y otros componentes celulares entre las dos células hijas en fase de segregación. Las células animales y vegetales realizan muchos otros movimientos para adquirir una forma determinada o para conservar su compleja estructura interna.

Mitocondrias y cloroplastos

Las mitocondrias son uno de los orgánulos más conspicuos del citoplasma y se encuentran en casi todas las células eucarióticas. Observadas al microscopio, presentan una estructura característica: la mitocondria tiene forma alargada u oval de varias micras de longitud y está envuelta por dos membranas distintas, una externa y otra interna, muy replegada. Las mitocondrias son los orgánulos productores de energía. La célula necesita energía para crecer y multiplicarse, y las mitocondrias aportan casi toda esta energía realizando las últimas etapas de la descomposición de las moléculas de los alimentos. Estas etapas finales consisten en el consumo de oxígeno y la producción de dióxido de carbono, proceso llamado respiración, por su similitud con la respiración pulmonar. Sin mitocondrias, los animales y hongos no serían capaces de utilizar oxígeno para extraer toda la energía de los alimentos y mantener con ella el crecimiento y la capacidad de reproducirse. Los organismos llamados anaerobios viven en medios sin oxígeno, y todos ellos carecen de mitocondrias. Los cloroplastos son orgánulos aún mayores y se encuentran en las células de plantas y algas, pero no en las de animales y hongos. Su estructura es aún más compleja que la mitocondria: además de las dos membranas de la envoltura, tienen numerosos sacos internos formados por membrana que encierran el pigmento verde llamado clorofila. Desde el punto de vista de la vida terrestre, los cloroplastos desempeñan una función aún más esencial que la de las mitocondrias: en ellos ocurre la fotosíntesis; esta función consiste en utilizar la energía de la luz solar para activar la síntesis de moléculas de carbono pequeñas y ricas en energía, y va acompañado de liberación de oxígeno. Los cloroplastos producen tanto las moléculas nutritivas como el oxígeno que utilizan las mitocondrias.

 

Membranas internas

Núcleos, mitocondrias y cloroplastos no son los únicos orgánulos internos de las células eucarióticas delimitados por membranas. El citoplasma contiene también muchos otros orgánulos envueltos por una membrana única que desempeñan funciones diversas. Casi todas guardan relación con la introducción de materias primas y la expulsión de sustancias elaboradas y productos de desecho por parte de la célula. Por ello, en las células especializadas en la secreción de proteínas, por ejemplo, determinados orgánulos están muy atrofiados; en cambio, los orgánulos son muy numerosos en las células de los vertebrados superiores especializadas en capturar y digerir los virus y bacterias que invaden el organismo. La mayor parte de los componentes de la membrana celular se forman en una red tridimensional irregular de espacios rodeada a su vez por una membrana y llamada retículo endoplasmático (RE), en el cual se forman también los materiales que son expulsados por la célula. El aparato de Golgi está formado por pilas de sacos aplanados envueltos en la membrana; este aparato recibe las moléculas formadas en el retículo endoplasmático, las transforma y las dirige hacia distintos lugares de la célula. Los lisosomas son pequeños orgánulos de forma irregular que contienen reservas de enzimas necesarias para la digestión celular de numerosas moléculas indeseables. Los peroxisomas son vesículas pequeñas envueltas en membrana que proporcionan un sustrato delimitado para reacciones en las cuales se genera y degrada peróxido de hidrógeno, un compuesto reactivo que puede ser peligroso para la célula. Las membranas forman muchas otras vesículas pequeñas encargadas de transportar materiales entre orgánulos. En una célula animal típica, los orgánulos limitados por membrana pueden ocupar hasta la mitad del volumen celular total.

División celular

Las plantas y los animales están formados por miles de millones de células individuales organizadas en tejidos y órganos que cumplen funciones específicas. Todas las células de cualquier planta o animal han surgido a partir de una única célula inicial (el óvulo fecundado) por un proceso de división. El óvulo fecundado se divide y forma dos células hijas idénticas, cada una de las cuales contiene un juego de cromosomas idéntico al de la célula parental. Después cada una de las células hijas vuelve a dividirse de nuevo, y así continúa el proceso. Salvo en la primera división del óvulo, todas las células crecen hasta alcanzar un tamaño aproximado al doble del inicial antes de dividirse. En este proceso, llamado mitosis, se duplica el número de cromosomas (es decir, el ADN) y cada uno de los juegos duplicados se desplaza sobre una matriz de microtúbulos hacia un polo de la célula en división, y constituirá la dotación cromosómica de cada una de las dos células hijas que se forman.

Los pasos para la realización de la división de las células son los siguientes :

 

Clonación de genes

Es el proceso mediante el cual puede aislarse un gen de entre todos los genes diferentes que existen en un organismo, lo que permite realizar su caracterización. Esto se consigue con la preparación de una batería de bacterias que contienen todos los genes distintos presentes en un organismo de manera que cada una de ellas contiene un solo gen. Esto se lleva a cabo efectuando cortes del ADN de un individuo. Otra alternativa es la de crear un conjunto de todas las secuencias de ADN expresadas en una célula específica mediante la producción de copias complementarias de ADN a partir del ARNm hallado en dichas células. En ambos casos, los fragmentos de ADN se unen a un vector, un virus bacteriano conocido como bacteriófago o a un ADN circular denominado plásmido, que se introduce en una bacteria de forma que cada una adquiere sólo una copia del vector y por tanto recibe sólo un fragmento de ADN. Los grupos preparados de esta forma se pueden examinar para identificar la bacteria que contiene el gen, objeto de estudio. Entonces, se toma esta bacteria y se hace crecer para producir un clon de bacterias idénticas. Como el vector que contiene el ADN insertado se replica siempre que la célula bacteriana se divide, se produce la cantidad suficiente de ADN insertado clonado necesaria para caracterizar el gen. De esta manera es posible estudiar los genes que codifican proteínas que tienen un interés especial, o aquellos cuya inactivación, consecuencia de una mutación, origina una enfermedad específica.

Gen

Es la unidad de herencia, partícula de material genético que determina la herencia de una característica determinada, o de un grupo de ellas. Los genes están localizados en los cromosomas en el núcleo celular y se disponen en línea a lo largo de cada uno de ellos. Cada gen ocupa en el cromosoma una posición, o locus. Por esta razón, el término locus se intercambia en muchas ocasiones con el de gen.

La clonación

Clonar significa obtener uno o varios individuos a partir de una célula somática o de un núcleo de otro individuo, de modo que los individuos clonados son idénticos o casi idénticos al original. En los animales superiores, la única forma de reproducción es la sexual, por la que dos células germinales o gametos se unen, formando un zigoto, que se desarrollará hasta dar el individuo adulto. Las células de un animal proceden en última instancia de la división repetida y diferenciación del zigoto. Las células somáticas, que constituyen los tejidos del animal adulto, han recorrido un largo camino "sin retorno", de modo que, a diferencia de las células de las primeras fases del embrión, han perdido la capacidad de generar nuevos individuos y cada tipo se ha especializado en una función distinta. El primer experimento de clonación en vertebrados fue el de Briggs y King , en ranas en los años 70, Gurdon logró colecciones de sapos de espuelas idénticas a base de insertar núcleos de células de fases larvarias tempranas en óvulos a los que se había despojado de sus correspondientes núcleos. Pero el experimento fracasa si se usan como donadoras células de ranas adultas. Desde hace unos años se vienen obteniendo mamíferos clónicos, pero sólo a partir de células embrionarias muy tempranas, debido a que aún no han entrado en diferenciación. No es extraño pues el revuelo científico cuando el equipo de Ian Wilmut, del Instituto Roslin de Edimburgo comunicó que habían logrado una oveja por clonación a partir de una célula diferenciada de un adulto. Esencialmente el método consiste en obtener un óvulo de oveja, eliminarle su núcleo, sustituirlo por un núcleo de célula de oveja adulta, e implantarlo en una tercera oveja para llevar el embarazo. Así pues, Dolly carece de padre y es el producto de tres ovejas: la donadora del óvulo contribuye con el citoplasma (que contiene, además mitocondrias que llevan un poco de material genético), la donadora del núcleo, y la que parió, que genéticamente no aporta nada. Científicamente se trata de un logro muy interesante, ya que demuestra que, al menos bajo determinadas circunstancias es posible "reprogramar" el material genético nuclear de una célula diferenciada. De este modo, este núcleo comienza a "dialogar" adecuadamente con el citoplasma del óvulo y desencadena todo el complejo proceso del desarrollo intrauterino.

 Fecundación y desarrollo embrionario

Desarrollo de las células germinales femeninas: es un proceso muy prolongado, que arranca de la fase fetal, y que concluye en la adulta.  Células primordiales germinales: se originan en la cresta germinal. Al recibir ciertas señales de las células del plexo dorsal de la cresta germinal, las células germinales primordiales entran en meiois, y pasan de diploides a haploides. Se detienen en diplotene hasta la fase adulta. En el ovario fetal los ovocitos primarios están rodeados y nutridos por una capa de células foliculares. Antes de la pubertad hay muerte programada de ovocitos, y desde la pubertad, algunos de estos ovocitos seguirán su desarrollo. Fase de crecimiento: No hay cambios en el ciclo celular, pero existe una gran actividad transcripcional, con aumento de 200 veces del tamaño del ovocito. Parte del ARN queda "silente", acomplejado con proteínas. Estos dos tipos de macromoléculas serán las esenciales para asegurar las primeras fases del zigoto y del embrión. Formación de la zona pelúcida (ZP), que separa al ovocito de las células foliculares. Fase de diferenciación: Durante las 48 horas previas a la fecundación las gonadotrofinas actúan sobre el folículo, cuyas células somáticas responden produciendo señales que reprograman al ovocito. Se usa el ARN almacenado en la fase previa. Las señales intrafoliculares iniciales para la maduración del ovocito provocan el paso desde G2 hasta M de la meioisis. Reaparece el ARNm enmascarado, y se traduce. Movimientos de orgánulos citoplásmicos. En la fecundación se unen los gametos femeninos (óvulo) y masculino (espermatozoide). Al entrar el espermatozoide, se activa el óvulo, que termina su diferenciación: final de la meiosis. Zigoto (célula huevo): finaliza la meiosis del óvulo, con eliminación del segundo cuerpo polar. Los procesos que ocurren durante las primeras horas son:

Se duplica el ADN de los genomas haploides de cada gameto

Singamia: aproximación de los pronúcleos de cada gameto, pero sin fusión nuclear.

Primera división mitótica: los cromosomas quedan engarzados en el huso mitótico, y las cromátidas hermanas se separan.

El embrión se va dividiendo, originando duplicación de las células (blastómeros):

2 células (a las 26 horas)

4 células (38 h)

8 células (46 h)

16 células (68 h)

Mórula: fase de 12-16 blastómeros (3º-4º día). Aspecto de pelota compacta, antes de la entrada en el útero.

Blastocisto: hueco interior, con la masa celular interna (estructuras embrionarias) y capas externas (trofectodermo)

Implantación: comienza al final de la 1ª semana, y termina al final de la 2ª.

Fase embrionaria dura hasta la 8ª-9ª semana, cuando quedan establecidos los rudimentos de todos los órganos.

Gástrula (15º-18º día): tres capas germinales (ecto, meso y endodermo). La actuación de ciertos productos génicos (de tipo Noggin) provoca la inducción neural, que genera la placa neural (primordio de la cuerda espinal y del cerebro).

Durante el 2º mes de embarazo, tras adquirir el "diseño general" el desarrollo conduce a la diferenciación general del sistema. Organogénesis hasta el 3º mes.

El resto del embarazo: sigue la diferenciación-maduración. Desarrollo fetal (3º mes hasta el nacimiento).

Aspectos relevantes para el trasplante de núcleos:

El trasplante de núcleos somáticos a óvulos enucleados tiene la intención de lograr lo que hacen de modo natural los dos pronúcleos del ovocito recién fertilizado. Cuando entra el espermatozoide, éste se encuentra en fase Go, mientras que el ovocito está en la segunda metafase meiótica (MII). Luego se descondensa el núcleo del espermatozoide y se sincronizan ambos ciclos celulares, ingresando al mismo tiempo en la fase S . Fase de diferenciación: Durante las 48 horas previas a la fecundación las gonadotrofinas actúan sobre el folículo, cuyas células somáticas responden produciendo señales que reprograman al ovocito. Se usa el ARN almacenado en la fase previa. En la activación del ovocito por el espermatozoide intervienen aumentos cíclicos de Ca++ intracelular. Ello provoca el descenso de actividad de la MPF quinasa (por degradación de la ciclina B y fosforilación de cdc2). Ello inhibe las moléculas bloqueadoras de la metafase II, lo que hace que el óvulo termine la mitosis. Se desenmascaran más ARNm, que se traducen. Al introducir un núcleo somático, tenemos que lograr sincronizarlo con la fase del ovocito y "remedar" los cambios fisiológicos arriba citados. Algunos de los protocolos artificiales estimulan la entrada de Ca al ovocito. La electroestimulación provoca un aumento de Ca++ único, pero no las oleadas de Ca++. Se mejora con pulsos de corriente o por ionomicina. Pero aún necesitamos mejorar para simular las condiciones naturales. Requisitos de ciclo celular: Sincronización núcleo-citoplasma. Periodo de reprogramación nuclear, para su adaptación al entorno citoplásmico. Si se usan núcleos de células diferenciadas, deben "desdiferenciarse" para lograr la totipotencia. Ello solo puede conseguirse con el citoplasma meiótico en fase M. El grupo de Wilmut , concluyó que el éxito aumenta con núcleos somáticos en fase G0 y citoplasmas en fase MII. En el reciente trabajo sobre la clonación de ratones, las condiciones mejores fueron: La activación se realiza dejando un cierto tiempo (6 horas) tras la inyección del núcleo donante en G0. La activación se induce con estroncio y citocatalasina B (con supresión de citoquinesis). Aunque esto parece paradójico en relación con otros informes, la exposición prolongada de los núcleos entrantes a un ambiente rico en MPF causa una duradera condensación de cromosomas (en ausencia de síntesis de ADN), y puede facilitar los cambios nucleares que son esenciales para el desarrollo e implantación del blastocisto. Puede que influya también el uso de una unidad de micropipeta de piezo-impacto, que permite que las manipulaciones del ovocito y del embrión sean rápidas y eficaces, reduciendo así el trauma de otros métodos (electrofusión, Virus Sendai o PEG).Pero incluso el "dogma" de la necesidad de usar células quiescentes como donantes parece que se tambalea: la reciente clonación de ratones usando células madre en fase G1 o en post-fase S (fases G2 y M) así lo indica. Recientemente, el grupo de PPL- Roslin, ha logrado cinco cerdos clónicos mediante un nuevo procedimiento de doble transferencia nuclear, a partir de células no quiescentes. Por ahora, parece que no todas las células somáticas son susceptibles de poder usarse como donantes de núcleos para la clonación. Se desconoce si se trata de un problema biológico o meramente técnico. Si es biológico, habrá que investigar qué es lo que hace que algunas células sean reprogramables y otras no, y cuál es la naturaleza de la reprogramación (obviamente debe haber activación y represión de genes).

Gemelos y mellizos

Gemelos dizigóticos (no idénticos): se originan por la fecundación de dos o más óvulos por distintos espermatozoides. Tasa de 0.6-1-1%nacimientos. Gran heredabilidad e incidencia de factores ambientales (nutrición, edad, etc.)

Gemelos monozigóticos (idénticos): por fisión de un embrión temprano. 0.3-0.4% de nacimimientos.

Tipos de clonación

Tipos de clonación según el método:

Partición (fisión) de embriones tempranos: analogía con la gemelación natural. Los individuos son muy semejantes entre sí, pero diferentes a sus padres. Es preferible emplear la expresión gemelación artificial, y no debe considerarse como clonación en sentido estricto.

Paraclonación: transferencia de núcleos procedentes de blastómeros embrionarios o de células fetales en cultivo a óvulos no fecundados enucleados y a veces, a zigotos enucleados. El "progenitor" de los clones es el embrión o feto.

Clonación verdadera: transferencia de núcleos de células de individuos ya nacidos a óvulos o zigotos enucleados. Se originan individuos casi idénticos entre sí (salvo mutaciones somáticas) y muy parecidos al donante (del que se diferencian en mutaciones somáticas y en el genoma mitocondrial, que procede del óvulo receptor).

Gemelación artificial

Partición de un embrión, o separación de blastómeros en embriones preimplantatorios (de 2-32 células). Cada mitad o trozo desgajado del embrión se introduce en una zona pelúcida de otro óvulo, o en una cubierta artificial (ZPA), y se implanta. Embriones se mojan en 1% de alginato y se transfieren a medio con Cl2Ca, que induce la polimerización. En ratones, tiene éxito con blastómeros separados en fase de 2 células. Pero los blastómeros de embriones de 4-8 células pueden suministrar células para la masa celular interna y para el trofectodermo si se incorporan junto con blastómeros de otros embriones. Se viene aplicando desde hace años en ganadería. Estudios de Willadsen sobre ovejas: algunos blastómeros de embriones de 4-8 células pueden originar individuos completos. Recientemente se ha hecho en monos (macacos Rhesus). En humanos hubo un experimento polémico con un zigoto poliploide inviable. Más estudios del equipo de Paul Gindoff de la Universidad G. Washington con embriones anómalos: los embriones más tempranos son mejores para la separación de blastómeros. La ZP natural se disgrega con pronasa y se colocan los embriones en Ca para separar los blastómeros. Inclusión de blastómeros en ZPA de alginato. La capacidad de división de los blastómeros de fases de 2 células era de 3 divisiones, y disminuía con blastómeros más tardíos. El resultado son individuos prácticamente idénticos entre sí (salvo mutaciones somáticas), pero diferentes a sus padres. Serían equivalentes a gemelos monozigóticos. No se debe considerar como clonación en sentido estricto.

 Paraclonación: por transferencia de núcleos de células embrionarias o fetales

Los núcleos pueden proceder de: Blastómeros de embrión preimplantatorio: las células de la masa celular interna como las del trofectodermo son totipotentes.

Células embrionarias o fetales de un cultivo primario o de un cultivo celular. Estos núcleos se transfieren a un óvulo enucleado o a un zigoto al que se le hayan eliminado los pronúcleos. Este óvulo receptor aporta mitocondrias, y en el caso del zigoto, algo del espermatozoide. El resultado: individuos casi idénticos entre sí, pero diferentes de los progenitores del embrión que aportó el núcleo transferido. Se pierde una generación, ya que el embrión donante del núcleo se destruye. Los individuos nacidos así se parecerían (desde el punto de vista del genoma nuclear) al individuo que hubiera surgido del embrión destruido. A mitad de los 80 se venían produciendo paraclonaciones en diversos animales de granja: ovejas y vacas. Willadsen logró terneros por transferencia de núcleos de embriones en fase de hasta 128 células. En 1996 el equipo de Wilmut y Campbell logró dos ovejas por transferencia de núcleos de embriones. PPL siguió con experimentos de paraclonación con células embrionarias y fibroblastos fetales. Se ha descrito igualmente la producción de monos Rhesus por transferencia de núcleos de blastómeros. En un caso se dividieron 107 embriones en 368 unidades, lográndose 4 embarazos, de uno de los cuales nació Tetra. Alguno de los intentos condujo a embarazos "ciegos", consistentes en un saco placentario desprovisto de tejido fetal. En una postdata los autores anuncian que acaban de lograr 4 embarazos, cada uno con un feto viable, a partir de los últimos 7 embriones originados por separación de blastómeros. Dos de los fetos son gemelos idénticos por fisión de un embrión original. Nacieron vivos y se llaman Neti y Ditto. Se ha empleado en animales transgénicos clónicos. Dolly (julio 1997), de PPL, es una oveja paraclónica (núcleo donante: fibroblastos fetales) transgénica productora de factor IX de coagulación humano. Intentos de cerdos modificados para xenotrasplantes. Un avance reciente significativo es la clonación de decenas de ratones empleando núcleos de células madre no quiescentes, realizado por un equipo de la Universidad de Hawai y la Universidad Rockefeller. Una de las mayores incidencias de este trabajo es que demuestra que se puede clonar con núcleos de células en cultivo bien caracterizadas, y no solamente con células frescas o cultivos primarios. Como las células madre de ratón se manejan bien desde el punto de vista genético, esto abre la vía a la fácil creación de ratones clónicos y transgénicos.

Clonación (en sentido estricto): por transferencia de núcleos de células de individuos nacidos.

El núcleo procede de individuo nacido. Se transfiere a óvulo o zigoto enucleados, y el embrión se implanta en útero. El resultado: individuos casi idénticos entre sí y casi idénticos a su progenitor (donante del núcleo). Se ha logrado en varias especies: Oveja (Dolly). Núcleo donante de célula sin identificar de ubre de oveja de 6 años de la raza Finn Dorset. Embrión implantado en hembra Scottish Blackface. Baja tasa de éxitos: 430 óvulos, de los que se obtuvieron 277 óvulos reconstituidos, que se cultivaron por separado durante 6 días. 29 blastocistos "normales" se transfirieron a hembras receptoras. El único éxito fue Dolly. Algunos fueron fetos o neonatos muertos, o con alteraciones del desarrollo.

Ratones, con núcleos del cúmulo ovóforo. (El primer ratón clónico nació el 3 de octubre de 1997, y fue llamado Cumulina; ya ha tenido progenie aparentemente normal, que a su vez se ha reproducido). El haber obtenido clones en esta especie de laboratorio, con ciclo de vida corto y de la que se tienen amplios conocimientos de su genética, abre perspectivas insospechadas para los estudios básicos sobre la clonación: mecanismos de la reprogramación celular, impronta (imprinting) genómica, activación del genoma del embrión, diferenciación celular, etc. Poco después, este mismo equipo japonés informó de la clonación de ratones a partir de células del rabo de ratones adultos.

Ganado bovino: núcleos de células epiteliales del oviducto, del cúmulo ovóforo, epiteliales, musculares.

Recientemente se ha logrado en ganado porcino: el grupo de Roslin-PPL lo ha conseguido con un nuevo método de doble transferencia nuclear, con el nacimiento de cinco lechones, con dos subgrupos de tres y dos que eran clones entre sí y con respecto al correspondiente donante.

¿Un protocolo universal para clonación reproductiva?

El grupo de Wakayama, en el artículo reciente que informa sobre clonación de ratones a partir de núcleos de células madre, propone un posible esquema que permitiría la clonación ilimitada a partir de casi cualquier célula del organismo (al menos en esta especie):

  1. Transferencia por microinyección de un núcleo de célula somática a un óvulo enucleado.
  2. Se dejaría desarrollar el embrión in vitro hasta una fase previa a la de implantación.
  3. A partir de las células de la masa interna del blastocisto se pueden establecer cultivos estables (inmortales) de células madre (ES). Todas esas células contendrían el mismo genoma nuclear que el individuo donante, genoma que quedaría de esta forma "inmortalizado".
  4. Las células madre pueden servir a su vez para:

 

De la gemelación artificial

En animales:

Investigación básica

Mejora de FIV

Mejora de fertilidad de las especies empleadas.

En humanos:

En FIV, para mejorar resultados en mujeres con pobre estimulación ovárica

Gemelos idénticos separados en el tiempo.

De la paraclonación

En animales: Individuos idénticos para investigación Producción ganadera Junto con clonación, para biotecnología: tejidos "humanizados", granjas farmacéuticas Fuentes de tejidos, para xenotrasplantes En humanos: ¿investigación básica y aplicada?¿Terapia? Para enfermedades mitocondriales que producen ceguera o epilepsia: transferencia del núcleo del embrión hasta un óvulo-zigoto receptor.

De la clonación verdadera

En animales:

mejora de conocimientos en biomedicina

modelos de enfermedades

con transgénesis: producción de medicamentos órganos para xenotrasplantes: cerdos transgénicos con factor inhibidor de complemento humano. Este es el objetivo del grupo de PPL, cuyo artículo reciente ya hemos citado: I.A. Polejaeva et al. (2000): "Cloned pigs produced by nuclear transfer from adult somatic cells", Nature 407: 86-90. De hecho, en dicho trabajo adelantan ya que han logrado cultivos celulares en los que el gen de la a f l a -1,3-galactosil transferasa está interrumpido, por lo que no es funcional. En principio, si lograsen cerdos transgénicos a partir de estas células, podrían servir como fuentes de tejidos para xenotrasplantes a humanos, evitándose el rechazo hiperagudo del injerto. Sin embargo, la cuestión de los xenotrasplantes a partir de tejidos porcinos está en entredicho, por el riesgo de que se puedan liberar virus endógenos a la población humana. Ello se complicaría aún más con las propuestas de obtener cerdos transgénicos dotados de proteínas humanas del complemento: si bien con ello se evitaría otra de las causas de rechazo, hay que tener en cuenta que algunas de esas proteínas sirven como puertas de entrada a algunos virus humanos.

Ganadería:

Obtención de animales transgénicos. Recombinación homóloga para generar animales noqueados con genes inactivados y sustituidos. Producción de proteínas terapéuticas. Algunas empresas:

PPL Therapeuthics: factor IX, a -1-antitripsina. Esta empresa ha logrado ovejas simultáneamente clónicas y transgénicas que segregan en su leche esa proteína de la que carecen los enfermos del enfisema pulmonar congénito. Hace poco han logrado expresar ese gen de forma controlada, insertándolo en un lugar predeterminado del genoma receptor, lo que si se confirma y amplía supone un gran paso para conseguir factorías vivas de sustancias útiles (K.J. McCreath, J. Howcroft, K.H.S. Campbell, A. Colman, A.E. Schnieke, A.J. Kind [2000]:

Genzyme Transgenics: estudios con cabras.

Idealmente se necesita método de transferencia no quirúrgica de embriones. Rápida propagación de fenotipos probados en el sector ganadero. ¿Venta y distribución cómoda de embriones? Evitar la falta de diversidad genética, limitando el número de individuos de un mismo clon en cada rebaño.

Intentos de salvar in extremis a especies de la extinción (p. ej, el panda gigante, un bóvido salvaje asiático llamado gaur, etc.). Incluso alguien está intentando "resucitar" especies extinguidas de las que hay material biológico conservado (alguna especie de marsupial australiano como el tigre de Tasmania, el bucardo - una subespecie de cabra montés recientemente desaparecida del Pirineo español).

En enero de 2001 nació en los EE.UU. un gaur clónico, pero murió a los dos días a causa de una disentería.

En octubre de 2001, se comunicó el nacimiento en Italia de un muflón clónico, a partir de células de hembras muertas de la isla de Cerdeña. En humanos, la clonación verdadera podría tener dos usos diferentes:

Clonación reproductiva: tal como se describe arriba, para crear un individuo clónico. Posibles situaciones:

Como técnica de reproducción asistida excepcional, no convencional.

Qué riesgos podría tener?

Datos sobre la "edad celular"

Otros efectos (cáncer?).

¿Solucionar cuestiones de seguridad?

Cuestiones de eficiencia:

si se tuviera la eficiencia del caso Dolly, necesitaríamos 200 mujeres.

Pero recientemente se ha visto que con el líquido de aspiración del folículo ovárico se pueden obtener muchos folículos preantrales que se pueden madurar en laboratorio hasta ovocitos maduros.

Desarrollo de folículos ováricos humanos en ratones hipogonádicos. ¿Ratones produciendo óvulos humanos?

Cuestiones de seguridad:

Incidencia de nacimientos muertos y abortos. Según Wilmut, hay un patrón continuo de muertes durante el desarrollo embrionario y fetal, llegando a término sólo 1-2% de los embriones.

¿Qué edad genética tiene el clon? ¿Corresponde a la edad de la célula donante? Los datos actuales parecen indicar que la transferencia nuclear no revierte la edad genética.

¿Supone esto mayor peligro de acumulación de mutaciones y de envejecimiento celular? (Hay informes sobre anomalías en este sentido, por ejemplo, un acortamiento significativo de los telómeros, lo que parece un indicio de la edad celular. Hay que recordar que los telómeros restauran su longitud normal en la línea germinal, que por definición no intervino en la producción de los animales clónicos. Es posible que los efectos fisiológicos en el acortamiento de la edad de los animales clonados se reflejen tras varias generaciones). Sin embargo, otros informes sobre las terneras clónicas parecen indicar que ocurre lo contrario, un rejuvenecimiento según ciertos parámetros moleculares.

Clonación no reproductiva: se realiza la manipulación celular como en la anterior, pero el embrión no se implanta en útero, sino que puede servir a distintos objetivos, principalmente de investigación:

BIBLIOGARAFIA

 

 

Visite La Webtecnica.

Categorías en La Web Técnica

 

 

Free Web Hosting